The pressing demand for novel antibiotics to counter drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), underscores the serious public health threat posed by antibiotic resistance. To address this issue, novel quinazoline-4-one derivatives were developed, synthesized, and evaluated in vitro against a range of pathogens, including fungi like Aspergillus fumigatus (RCMB 002008), Gram-negative bacteria like Escherichia coli (ATCC 25922), and Gram-positive bacteria like Staphylococcus aureus (ATCC 25923) and MRSA (USA300). Notably, the thieno-thiazolo-quinazoline compounds 4 and 5 demonstrated a strong ability to inhibit and disrupt MRSA USA300 biofilm formation across all tested concentrations. Furthermore, in an in vivo MRSA skin infection model, these compounds effectively reduced bacterial counts compared to both vehicle-treated and untreated control groups. To enhance understanding and provide deeper insights, ADMET and docking simulations were also conducted.
Design, Characterization, Antimicrobial Activity, and In Silico Studies of Theinothiazoloquinazoline Derivatives Bearing Thiazinone, Tetrazole, and Triazole Moieties.
阅读:5
作者:El-Hema Hagar S, Soliman Sara M, El-Dougdoug Wagdy, Ahmed Mohamed H M, Abdelmajeid Abdelmotaal, Nossier Eman S, Hussein Modather F, Alrayes Ashtar A, Hassan Mariam, Ahmed Noha A, Sabry Amr, Abdel-Rahman Adel A-H
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Feb 28; 10(9):9703-9717 |
| doi: | 10.1021/acsomega.4c11076 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
