Fault Detection of Wind Turbine Gearboxes Based on IBOA-ERF.

阅读:7
作者:Tang Mingzhu, Cao Chenhuan, Wu Huawei, Zhu Hongqiu, Tang Jun, Peng Zhonghui, Wang Yifan
As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。