BACKGROUND: Evolution of microbes under laboratory selection produces genetically diverse populations, owing to the continuous input of mutations and to competition among lineages. Whole-genome whole-population sequencing makes it possible to identify mutations arising in such populations, to use them to discern functional modules where adaptation occurs, and then map gene structure-function relationships. Here, we report on the use of this approach, adaptive genetics, to discover targets of selection and the mutational consequences thereof in E. coli evolving under chronic nutrient limitation. RESULTS: Replicate bacterial populations were cultured forââ¥â300 generations in glucose limited chemostats and sequenced every 50 generations at 1000X-coverage, enabling identification of mutations that rose toââ¥â1% frequency. Thirty-nine genes qualified as high value targets of selection, being mutated far more often than would be expected by chance. A majority of these encode regulatory proteins that control gene expression at the transcriptional (e.g., RpoS and OmpR), post-transcriptional (e.g., Hfq and ProQ), and post-translational (e.g., GatZ) levels. The downstream effects of these regulatory mutations likely impact not only acquisition and processing of limiting glucose, but also assembly of structural elements such as lipopolysaccharide, periplasmic glucans, and cell surface appendages such as flagella and fimbriae. Whether regulatory or structural in nature, recurrent mutations at high value targets tend to cluster at sites either known or predicted to be involved in RNA-protein or protein-protein interactions. CONCLUSIONS: Our observations highlight the value of experimental evolution as a proving ground for inferences gathered from traditional molecular genetics. By coupling experimental evolution to whole-genome, whole-population sequencing, adaptive genetics makes it possible not only the genes whose mutation confers a selective advantage, but also to discover which residues in which genes are most likely to confer a particular type of selective advantage and why.
Adaptive genetics reveals constraints on protein structure/function by evolving E. coli under constant nutrient limitation.
阅读:23
作者:Schwartz Katja, Kinnersley Margie, Lindsey Charles Ross, Sherlock Gavin, Rosenzweig Frank
| 期刊: | BMC Biology | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Aug 20; 23(1):261 |
| doi: | 10.1186/s12915-025-02331-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
