Indoor environments are affected during wildfire events due to the infiltration of smoke. In this study, the fate of wildfire smoke, including gases and particles, on indoor surfaces was investigated through laboratory and field experiments. Fresh smoke was generated from the burning of ponderosa pine woodchips, which produced well-established wildfire and biomass burning tracers, such as levoglucosan, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), and 5-hydroxymethylfurfural. The interactions of smoke particles and gases were observed on different indoor-relevant building material surfaces, including glass (windows), rutile (paint and self-cleaning surfaces), and kaolinite (cement proxy and clay). However, the relative abundance of surface-bound species varied depending on the nature of these surfaces, suggesting that preferential adsorption of volatile species and particle deposition onto relevant surfaces play a key role in indoor chemistry and indoor air quality following smoke intrusion. Kaolinite surfaces, in particular, exhibited the formation of surface-initiated products during fresh smoke exposure. Furthermore, the formation of larger particles on a rutile surface was observed following ozone-aged smoke exposure, potentially resulting from the interaction of secondary organic aerosol formed during ozonolysis. Overall, this study demonstrates that different indoor-relevant material surfaces interact uniquely with smoke compounds, leading to distinct chemical transformations.
Chemical Transformations of Infiltrated Wildfire Smoke on Indoor-Relevant Surfaces.
阅读:10
作者:Deeleepojananan Cholaphan, Pandit Shubhrangshu, Li Jienan, Schmidt Dylan A, Farmer Delphine K, Grassian Vicki H
| 期刊: | Environmental Science & Technology | 影响因子: | 11.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 29; 59(16):8048-8059 |
| doi: | 10.1021/acs.est.4c11771 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
