Bayesian AEWMA control chart under ranked set sampling with application to reliability engineering.

阅读:3
作者:Khan Imad, Noor-Ul-Amin Muhammad, Muhammad Khan Dost, Khalil Umair, Ismail Emad A A, Yasmeen Uzma, Ahmad Bakhtiyar
The article introduces a novel Bayesian AEWMA Control Chart that integrates different loss functions (LFs) like the square error loss function and Linex loss function under an informative prior for posterior and posterior predictive distributions, implemented across diverse ranked set sampling (RSS) designs. The main objective is to detect small to moderate shifts in the process mean, with the average run length and standard deviation of run length serving as performance measures. The study employs a hard bake process in semiconductor production to demonstrate the effectiveness of the proposed chart, comparing it with existing control charts through Monte Carlo simulations. The results underscore the superiority of the proposed approach, particularly under RSS designs compared to simple random sampling (SRS), in identifying out-of-control signals. Overall, this study contributes a comprehensive method integrating various LFs and RSS schemes, offering a more precise and efficient approach for detecting shifts in the process mean. Real-world applications highlight the heightened sensitivity of the suggested chart in identifying out-of-control signals compared to existing Bayesian charts using SRS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。