The memory-type control charts, such as cumulative sum (CUSUM) and exponentially weighted moving average control chart, are more desirable for detecting a small or moderate shift in the production process of a location parameter. In this article, a novel Bayesian adaptive EWMA (AEWMA) control chat utilizing ranked set sampling (RSS) designs is proposed under two different loss functions, i.e., square error loss function (SELF) and linex loss function (LLF), and with informative prior distribution to monitor the mean shift of the normally distributed process. The extensive Monte Carlo simulation method is used to check the performance of the suggested Bayesian-AEWMA control chart using RSS schemes. The effectiveness of the proposed AEWMA control chart is evaluated through the average run length (ARL) and standard deviation of run length (SDRL). The results indicate that the proposed Bayesian control chart applying RSS schemes is more sensitive in detecting mean shifts than the existing Bayesian AEWAM control chart based on simple random sampling (SRS). Finally, to demonstrate the effectiveness of the proposed Bayesian-AEWMA control chart under different RSS schemes, we present a numerical example involving the hard-bake process in semiconductor fabrication. Our results show that the Bayesian-AEWMA control chart using RSS schemes outperforms the EWMA and AEWMA control charts utilizing the Bayesian approach under simple random sampling in detecting out-of-control signals.
Adaptive EWMA control chart using Bayesian approach under ranked set sampling schemes with application to Hard Bake process.
阅读:3
作者:Khan Imad, Noor-Ul-Amin Muhammad, Khan Dost Muhammad, AlQahtani Salman A, Sumelka Wojciech
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Jun 10; 13(1):9463 |
| doi: | 10.1038/s41598-023-36469-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
