Reversible protonic ceramic cells (R-PCCs) are at the forefront of electrochemical conversion devices, capable of reversibly and efficiently converting chemical energy into electricity at intermediate temperatures (350-700 °C) with zero carbon emissions. However, slow surface catalytic reactions at the air-electrode often hinder their performance and durability. The electrode surface is not merely an extension of the bulk structure, equilibrium reconstruction can lead to significantly different crystal-plane terminations and morphologies, which are influenced by material's intrinsic properties and external reaction conditions. Understanding electrode surface evolution at elevated temperatures in water-containing, oxidative atmospheres presents significant importance. In this review, a comprehensive summary of recent processes in applying advanced characterization techniques for high-temperature electrode surfaces is provided, exploring the correlations between surface evolution and performance fluctuations by examining the structural evolution and reconstruction of various air-electrode surfaces associated with degradation and activation phenomena, offering insights into their impact on electrode performance. Furthermore, reported strategies and recent advances in enhancing the electrochemical performance of R-PCCs through engineering air-electrode surfaces is discussed. This review offers valuable insights into surface evolution in R-PCCs and is expected to guide future developments in high-temperature catalysis, solid-state ionics, and energy materials.
Evolution and Reconstruction of Air-Electrode Surface Composition in Reversible Protonic Ceramic Cells: Mechanisms, Impacts on Catalytic Performance, and Optimization Strategies - A Review.
阅读:9
作者:Shi Nai, Xie Yun, Tadé Moses Oludayo, Shao Zongping
| 期刊: | Advanced Materials | 影响因子: | 26.800 |
| 时间: | 2025 | 起止号: | 2025 Mar;37(11):e2416528 |
| doi: | 10.1002/adma.202416528 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
