Total Anthocyanin Content of Strawberry and the Profile Changes by Extraction Methods and Sample Processing.

阅读:4
作者:Taghavi Toktam, Patel Hiral, Akande Omololu E, Galam Dominique Clark A
Anthocyanins are the primarily pigments in many flowers, vegetables, and fruits and play a critical role in human and plant health. They are polyphenolic pigments that are soluble in water and usually quantified by spectrophotometric methods. The two main methods that quantify anthocyanins are pH differential and organic solvent-based methods. Our hypothesis was that these methods extract different anthocyanin profiles. Therefore, this experiment was designed to identify anthocyanin profiles that are extracted by pH differential and organic solvent-based methods and observe their total anthocyanin content from strawberries. Six methods were tested in this experiment to quantify and profile anthocyanins in strawberry fruits by spectrophotometry and Ultra High Performance Liquid Chromatography (UHPLC) respectively. Four methods used organic solvents (methanol, and chloroform-methanol) in different combinations. The next two methods were pH differential and a combination of organic solvent and the pH differential method. The results suggest that acidified chloroform-methanol extracted the highest anthocyanin content compared to water-based solvents. Methanol-water based solvents also performed better than methanol alone, because both methanol and water may extract different profiles of anthocyanins. Water-based extracts had the greatest absorbance at a lower wavelength (498 nm), followed by methanol (508 nm), and chloroform (530 nm). Chloroform-methanol solvent with higher pH (3.0) extracted pelargonidin as the main anthocyanin, while methanol and water-based solvents (with lower pH 1.0-2.0) extracted delphinidin as their main anthocyanin as identified by UHPLC. Therefore, chloroform-methanol and methanol-water solvents were the best solvents for extracting anthocyanins from strawberries. Also, freeze-dried strawberries had higher anthocyanin contents compared to fresh or frozen samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。