The exploitation of cost-effective, sustainable, green and efficient compounds is a renewed science and a demanding mission for today's chemists and technologists. In this view, the inhibitive corrosion properties of some hydrazine derivatives named (1E,2E)-bis(1-(2-nitrophenyl)ethylidene)hydrazine (SSBO), (1E,2E)-bis(1-(3-nitrophenyl)ethylidene)hydrazine (SSBM) and (1E,2E)-bis(1-(4-nitrophenyl)ethylidene)hydrazine (SSBP) on the C38 steel corrosion in 1M HCl media has been evaluated by different techniques like electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The EIS results showed that SSBM is the greatest inhibitor ( η > 93 %) among the three tested compounds. The SSBM gives considerable inhibition efficiency against corrosion of steel compared to the previous studies. The PDP curves indicated that the studied inhibitors were a mixed-type inhibitor with a predominantly cathodic control. Quantum calculations of some descriptors derived from the density functional theory (DFT), the transition state theory (TST), the quantum theory of atoms in molecules (QTAIM) and molecular dynamics simulation have delivered helpful information regarding electron transfer and mechanism during adsorption of inhibitors on C38 steel surface.
Evaluation of inhibitive corrosion potential of symmetrical hydrazine derivatives containing nitrophenyl moiety in 1M HCl for C38 steel: experimental and theoretical studies.
阅读:5
作者:Lakbaibi Zouhair, Damej Mohamed, Molhi Abdu, Benmessaoud Mohammed, Tighadouini Said, Jaafar Adil, Benabbouha Tariq, Ansari Abdeselam, Driouich Anas, Tabyaoui Mohamed
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2022 | 起止号: | 2022 Mar 15; 8(3):e09087 |
| doi: | 10.1016/j.heliyon.2022.e09087 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
