This paper deals with the development of a realtime structural health monitoring system for airframe structures to localize and estimate the magnitude of the loads causing deflections to the critical components, such as wings. To this end, a framework that is based on artificial neural networks is developed where features that are extracted from a depth camera are utilized. The localization of the load is treated as a multinomial logistic classification problem and the load magnitude estimation as a logistic regression problem. The neural networks trained for classification and regression are preceded with an autoencoder, through which maximum informative data at a much smaller scale are extracted from the depth features. The effectiveness of the proposed method is validated by an experimental study performed on a composite unmanned aerial vehicle (UAV) wing subject to concentrated and distributed loads, and the results obtained by the proposed method are superior when compared with a method based on Castigliano's theorem.
Realtime Localization and Estimation of Loads on Aircraft Wings from Depth Images.
阅读:8
作者:Bilal Diyar Khalis, Unel Mustafa, Yildiz Mehmet, Koc Bahattin
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2020 | 起止号: | 2020 Jun 16; 20(12):3405 |
| doi: | 10.3390/s20123405 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
