Sensitivity Tests of Pellets Made from Manganese Antimonate Nanoparticles in Carbon Monoxide and Propane Atmospheres.

阅读:5
作者:Guillén-Bonilla Héctor, Rodríguez-Betancourtt Verónica-M, Guillen-Bonilla José Trinidad, Gildo-Ortiz Lorenzo, Guillen-Bonilla Alex, Casallas-Moreno Y L, Blanco-Alonso Oscar, Reyes-Gómez Juan
Nanoparticles of manganese antimonate (MnSb₂O₆) were prepared using the microwave-assisted colloidal method for its potential application as a gas sensor. For the synthesis of the oxide, manganese nitrate, antimony chloride, ethylenediamine and ethyl alcohol (as a solvent) were used. The precursor material was calcined at 800 °C in air and analyzed by X-ray diffraction. The oxide crystallized into a hexagonal structure with spatial group P321 and cell parameters a = b = 8.8054 à and c = 4.7229 à . The microstructure of the material was analyzed by scanning electron microscopy (SEM), finding the growth of microrods with a size of around ~10.27 μm and some other particles with an average size of ~1.3 μm. Photoacoustic spectroscopy (PAS) studies showed that the optical energy band (Eg) of the oxide was of ~1.79 eV. Transmission electron microscopy (TEM) analyses indicated that the size of the nanoparticles was of ~29.5 nm on average. The surface area of the powders was estimated at 14.6 m²/g by the Brunauer⁻Emmett⁻Teller (BET) method. Pellets prepared from the nanoparticles were tested in carbon monoxide (CO) and propane (C₃H₈) atmospheres at different concentrations (0⁻500 ppm) and operating temperatures (100, 200 and 300 °C). The pellets were very sensitive to changes in gas concentration and temperature: the response of the material rose as the concentration and temperature increased. The results showed that the MnSb₂O₆ nanoparticles can be a good candidate to be used as a novel gas sensor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。