MOTIVATION: Mass spectrometry imaging (MSI) provides rich biochemical information in a label-free manner and therefore holds promise to substantially impact current practice in disease diagnosis. However, the complex nature of MSI data poses computational challenges in its analysis. The complexity of the data arises from its large size, high-dimensionality and spectral nonlinearity. Preprocessing, including peak picking, has been used to reduce raw data complexity; however, peak picking is sensitive to parameter selection that, perhaps prematurely, shapes the downstream analysis for tissue classification and ensuing biological interpretation. RESULTS: We propose a deep learning model, massNet, that provides the desired qualities of scalability, nonlinearity and speed in MSI data analysis. This deep learning model was used, without prior preprocessing and peak picking, to classify MSI data from a mouse brain harboring a patient-derived tumor. The massNet architecture established automatically learning of predictive features, and automated methods were incorporated to identify peaks with potential for tumor delineation. The model's performance was assessed using cross-validation, and the results demonstrate higher accuracy and a substantial gain in speed compared to the established classical machine learning method, support vector machine. AVAILABILITY AND IMPLEMENTATION: https://github.com/wabdelmoula/massNet. The data underlying this article are available in the NIH Common Fund's National Metabolomics Data Repository (NMDR) Metabolomics Workbench under project id (PR001292) with http://dx.doi.org/10.21228/M8Q70T. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
massNet: integrated processing and classification of spatially resolved mass spectrometry data using deep learning for rapid tumor delineation.
阅读:4
作者:Abdelmoula Walid M, Stopka Sylwia A, Randall Elizabeth C, Regan Michael, Agar Jeffrey N, Sarkaria Jann N, Wells William M, Kapur Tina, Agar Nathalie Y R
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2022 | 起止号: | 2022 Mar 28; 38(7):2015-2021 |
| doi: | 10.1093/bioinformatics/btac032 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
