Research on End-Effector Position Error Compensation of Industrial Robotic Arm Based on ECOA-BP.

阅读:4
作者:Xiang Wenping, Chen Junhua, Li Hao, Chai Zhiyuan, Lou Yinghou
Industrial robotic arms are often subject to significant end-effector pose deviations from the target position due to the combined effects of nonlinear deformations such as link flexibility, joint compliance, and end-effector load. To address this issue, a study was conducted on the analysis and compensation of end-position errors in a six-degree-of-freedom robotic arm. The kinematic model of the robotic arm was established using the Denavit-Hartenberg (DH) parameter method, and a rigid-flexible coupled virtual prototype model was developed using ANSYS and ADAMS. Kinematic simulations were performed on the virtual prototype to analyze the variation in end-effector position errors under rigid-flexible coupling conditions. To achieve error compensation, an approach based on an Enhanced Crayfish Optimization Algorithm (ECOA) optimizing a BP neural network was proposed to compensate for position errors. An experimental platform was constructed for error measurement and validation. The experimental results demonstrated that the positioning accuracy after compensation improves by 75.77%, fully validating the effectiveness and reliability of the proposed method for compensating flexible errors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。