Background
Radiotherapy (RT) is an essential component in the treatment regimens for many cancer patients. However, the dose escalation required to improve curative
Conclusions
Incorporating DTX to work in unison with GNPs and RT can increase the efficacy of RT treatment. Our study suggests that the treatment strategy could improve tumor control through local dose enhancement. As the concentrations used in this study are clinically feasible, there is potential for this strategy to be translated into clinical settings.
Results
The introduction of DTX to GNP-enhanced radiotherapy further increased the radiotherapeutic effects experienced by cancer cells. A 38% increase in DNA double-strand breaks was observed with the combination of GNP/DTX vs GNP alone after a dose of 2 Gy was administered. In vivo results displayed significant reduction in tumor growth over a 30-day observation period with the treatment of GNP/DTX/RT when compared to GNP/RT after a single 5 Gy dose was given to mice. The treatment strategy also resulted in 100% mice survival, which was not observed for other treatment conditions. Conclusions: Incorporating DTX to work in unison with GNPs and RT can increase the efficacy of RT treatment. Our study suggests that the treatment strategy could improve tumor control through local dose enhancement. As the concentrations used in this study are clinically feasible, there is potential for this strategy to be translated into clinical settings.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12645-023-00228-0.
