The fusion of tetrapyrroles with aromatic heterocycles constitutes a useful tool for manipulating their opto-electronic properties. In this work, the synthesis of naphthodithiophene-fused porphyrins was achieved through a Heck reaction-based cascade of steps followed by the Scholl reaction. The naphthodithiophene-fused porphyrins display a unique set of optical and electronic properties. Fusion of the naphtho[2,1-b:3,4-b']dithiophene to porphyrin (F2VTP) leads to a ~20% increase in the fluorescence lifetime, which is accompanied, unexpectedly, by a more than two-fold drop in the emission quantum yield (Ï=0.018). In contrast, fusion of the isomeric naphtho[1,2-b:4,3-b']dithiophene to porphyrin (F3VPT) results in a ~1.5-fold increase in the fluorescence quantum yield (Ï=0.13) with a concomitant ~30â% increase in the fluorescence lifetime. This behavior suggests that fusion of the porphyrin with the naphthodithiopheno-system mainly affects the radiative rate constant in the Q-state deactivation pathway, where the effects of the isomeric naphtho[2,1-b:3,4-b']dithiophene- versus naphtho[1,2-b:4,3-b']dithiophene-fusion are essentially the opposite. Interestingly, nucleus-independent chemical shifts analysis revealed a considerable difference between the aromaticities of these two isomeric systems. Our results demonstrate that subtle structural differences in the fused components of the porphyrin can be reflected in rather significant differences between the photophysical properties of the resulting systems.
Naphthodithiophene-Fused Porphyrins: Synthesis, Characterization, and Impact of Extended Conjugation on Aromaticity.
阅读:8
作者:Cooper Courtney, Paul Ros, Alsaleh Ajyal, Washburn Spenser, Rackers William, Kumar Siddhartha, Nesterov Vladimir N, D'Souza Francis, Vinogradov Sergei A, Wang Hong
| 期刊: | Chemistry | 影响因子: | 2.400 |
| 时间: | 2023 | 起止号: | 2023 Oct 13; 29(57):e202302013 |
| doi: | 10.1002/chem.202302013 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
