CTNNB1 mutations and overexpression of Wnt/beta-catenin target genes in WT1-mutant Wilms' tumors.

阅读:3
作者:Li Chi-Ming, Kim Connie E, Margolin Adam A, Guo Meirong, Zhu Jimmy, Mason Jacqueline M, Hensle Terrence W, Murty Vundavalli V V S, Grundy Paul E, Fearon Eric R, D'Agati Vivette, Licht Jonathan D, Tycko Benjamin
Gain-of-function mutations in exon 3 of beta-catenin (CTNNB1) are specific for Wilms' tumors that have lost WT1, but 50% of WT1-mutant cases lack such "hot spot" mutations. To ask whether stabilization of beta-catenin might be essential after WT1 loss, and to identify downstream target genes, we compared expression profiles in WT1-mutant versus WT1 wild-type Wilms' tumors. Supervised and nonsupervised hierarchical clustering of the expression data separated these two classes of Wilms' tumor. The WT1-mutant tumors overexpressed genes encoding myogenic and other transcription factors (MOX2, LBX1, SIM2), signaling molecules (TGFB2, FST, BMP2A), extracellular Wnt inhibitors (WIF1, SFRP4), and known beta-catenin/TCF targets (FST, CSPG2, CMYC). Beta-Catenin/TCF target genes were overexpressed in the WT1-mutant tumors even in the absence of CTNNB1 exon 3 mutations, and complete sequencing revealed gain-of-function mutations elsewhere in the CTNNB1 gene in some of these tumors, increasing the overall mutation frequency to 75%. Lastly, we identified and validated a novel direct beta-catenin target gene, GAD1, among the WT1-mutant signature genes. These data highlight two molecular classes of Wilms' tumor, and indicate strong selection for stabilization of beta-catenin in the WT1-mutant class. Beta-Catenin stabilization can initiate tumorigenesis in other systems, and this mechanism is likely critical in tumor formation after loss of WT1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。