Human activity recognition (HAR) based on wearable sensors has emerged as a low-cost key-enabling technology for applications such as human-computer interaction and healthcare. In wearable sensor-based HAR, deep learning is desired for extracting human active features. Due to the spatiotemporal dynamic of human activity, a special deep learning network for recognizing the temporal continuous activities of humans is required to improve the recognition accuracy for supporting advanced HAR applications. To this end, a residual multifeature fusion shrinkage network (RMFSN) is proposed. The RMFSN is an improved residual network which consists of a multi-branch framework, a channel attention shrinkage block (CASB), and a classifier network. The special multi-branch framework utilizes a 1D-CNN, a lightweight temporal attention mechanism, and a multi-scale feature extraction method to capture diverse activity features via multiple branches. The CASB is proposed to automatically select key features from the diverse features for each activity, and the classifier network outputs the final recognition results. Experimental results have shown that the accuracy of the proposed RMFSN for the public datasets UCI-HAR, WISDM, and OPPORTUNITY are 98.13%, 98.35%, and 93.89%, respectively. In comparison with existing advanced methods, the proposed RMFSN could achieve higher accuracy while requiring fewer model parameters.
Wearable Sensor-Based Residual Multifeature Fusion Shrinkage Networks for Human Activity Recognition.
阅读:3
作者:Zeng Fancheng, Guo Mian, Tan Long, Guo Fa, Liu Xiushan
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Jan 24; 24(3):758 |
| doi: | 10.3390/s24030758 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
