Integrating genome-wide association (GWAS) and expression quantitative trait locus (eQTL) data into transcriptome-wide association studies (TWAS) based on predicted expression can boost power to detect novel disease loci or pinpoint the susceptibility gene at a known disease locus. However, it is often the case that multiple eQTL genes colocalize at disease loci, making the identification of the true susceptibility gene challenging, due to confounding through linkage disequilibrium (LD). To distinguish between true susceptibility genes (where the genetic effect on phenotype is mediated through expression) and colocalization due to LD, we examine an extension of the Mendelian randomization (MR) egger regression method that allows for LD while only requiring summary association data for both GWAS and eQTL. We derive the standard TWAS approach in the context of MR and show in simulations that the standard TWAS does not control type I error for causal gene identification when eQTLs have pleiotropic or LD-confounded effects on disease. In contrast, LD-aware MR-Egger (LDA MR-Egger) regression can control type I error in this case while attaining similar power as other methods in situations where these provide valid tests. However, when the direct effects of genetic variants on traits are correlated with the eQTL associations, all of the methods we examined including LDA MR-Egger regression can have inflated type I error. We illustrate these methods by integrating gene expression within a recent large-scale breast cancer GWAS to provide guidance on susceptibility gene identification.
Transcriptome-wide association studies accounting for colocalization using Egger regression.
阅读:4
作者:Barfield Richard, Feng Helian, Gusev Alexander, Wu Lang, Zheng Wei, Pasaniuc Bogdan, Kraft Peter
| 期刊: | Genetic Epidemiology | 影响因子: | 3.800 |
| 时间: | 2018 | 起止号: | 2018 Jul;42(5):418-433 |
| doi: | 10.1002/gepi.22131 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
