BACKGROUND: Due to the unique anatomy and complex function of the penis, the reconstruction of penile defect is fraught with great challenges. The current standard methods are limited by numerous complications and insufficient donor sites. While functional vascularized penile tissue engineering offers a novel way to address this problem, revascularization remains the primary concern. METHODS: In this study, a penile scaffold with associated modifications was constructed. The performance of decellularized penile scaffolds (DPSs) was improved by conjugation with heparin (HEP) and reseeding with human umbilical vein endothelial cells (HUVECs). There were three groups according to the modifications, including native DPSs, HEP-DPSs, HEP-HUVECs-DPSs. After perfusing with 1% Triton X-100/0.1% ammonium hydroxide solution, the cellular components were removed. Subsequently, the covalent binding of heparin in the DPSs was performed with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide, followed by reseeding with HUVECs. Scaffolds were implanted into the backs of rats and the implanted tissues were harvested at 1, 2, 3, and 4 weeks. Then hematoxylin and eosin (H&E) staining and immunofluorescence assays were performed to assess the degree of angiogenesis. RESULTS: The native DPSs retained the extracellular matrix and heparinized modification. The H&E results indicated that more HUVECs covered the inner surface of tubular structures in the HEP-DPSs group compared to the native DPSs group. The number of vessels in the HEP-HUVECs-DPSs was significantly increased compared to the control scaffolds at all time points. CONCLUSIONS: These results suggested that, compared to the native DPS, heparin-conjugated scaffolds provided a superior environment for the growth of HUVECs and the modified methods provided a perspective for overcoming the obstacles in tissue engineering of transplantable penile tissues and the establishment of a functional vasculature.
Constructing a heparin-modified penile decellularized scaffold to improve re-endothelialization in organizational reconstruction.
阅读:3
作者:Zhang Houliang, Song Xinran, Ni Jinliang, Mao Weipu, Tian Changxiu, Xie Jinbo, Zhang Yifan, Wang Yidi, Wan Jian, Wang Keyi, Peng Bo
| 期刊: | Translational Andrology and Urology | 影响因子: | 1.700 |
| 时间: | 2022 | 起止号: | 2022 May;11(5):683-693 |
| doi: | 10.21037/tau-22-315 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
