An ensemble deep learning framework for energy demand forecasting using genetic algorithm-based feature selection.

阅读:7
作者:Sakib Mohd, Siddiqui Tamanna, Mustajab Suhel, Alotaibi Reemiah Muneer, Alshareef Nouf Mohammad, Khan Mohammad Zunnun
Accurate energy demand forecasting is critical for efficient energy management and planning. Recent advancements in computing power and the availability of large datasets have fueled the development of machine learning models. However, selecting the most appropriate features to enhance prediction accuracy and robustness remains a key challenge. This study proposes an ensemble approach that integrates a genetic algorithm with multiple forecasting models to optimize feature selection. The genetic algorithm identifies the optimal subset of features from a dataset that includes historical energy consumption, weather variables, and temporal characteristics. These selected features are then used to train three base learners: Long Short-Term Memory (LSTM), Bi-directional Long Short-Term Memory (BiLSTM), and Gated Recurrent Unit (GRU). The predictions from these models are combined using a stacking ensemble technique to generate the final forecast. To enhance model evaluation, we divided the dataset into weekday and weekend subsets, allowing for a more detailed analysis of energy consumption patterns. To ensure the reliability of our findings, we conducted ten simulations and applied the Wilcoxon Signed Rank Test to the results. The proposed model demonstrated exceptional precision, achieving a Root Mean Square Error (RMSE) of 130.6, a Mean Absolute Percentage Error (MAPE) of 0.38%, and a Mean Absolute Error (MAE) of 99.41 for weekday data. The model also maintained high accuracy for weekend predictions, with an RMSE of 137.41, a MAPE of 0.42%, and an MAE of 105.67. This research provides valuable insights for energy analysts and contributes to developing more sophisticated demand forecasting methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。