Xylella fastidiosa is a bacterial pathogen affecting many plant species worldwide. Recently, the subspecies pauca (Xfp) has been reported as the causal agent of a devastating disease on olive trees in the Salento area (Apulia region, southeastern Italy), where centenarian and millenarian plants constitute a great agronomic, economic, and landscape trait, as well as an important cultural heritage. It is, therefore, important to develop diagnostic tools able to detect the disease early, even when infected plants are still asymptomatic, to reduce the infection risk for the surrounding plants. The reference analysis is the quantitative real time-Polymerase-Chain-Reaction (qPCR) of the bacterial DNA. The aim of this work was to assess whether the analysis of hyperspectral data, using different statistical methods, was able to select with sufficient accuracy, which plants to analyze with PCR, to save time and economic resources. The study area was selected in the Municipality of Oria (Brindisi). Partial Least Square Regression (PLSR) and Canonical Discriminant Analysis (CDA) indicated that the most important bands were those related to the chlorophyll function, water, lignin content, as can also be seen from the wilting symptoms in Xfp-infected plants. The confusion matrix of CDA showed an overall accuracy of 0.67, but with a better capability to discriminate the infected plants. Finally, an unsupervised classification, using only spectral data, was able to discriminate the infected plants at a very early stage of infection. Then, in phase of testing qPCR should be performed only on the plants predicted as infected from hyperspectral data, thus, saving time and financial resources.
Assessment of the Hyperspectral Data Analysis as a Tool to Diagnose Xylella fastidiosa in the Asymptomatic Leaves of Olive Plants.
阅读:4
作者:Riefolo Carmela, Antelmi Ilaria, Castrignanò Annamaria, Ruggieri Sergio, Galeone Ciro, Belmonte Antonella, Muolo Maria Rita, Ranieri Nicola A, Labarile Rossella, Gadaleta Giovanni, Nigro Franco
| 期刊: | Plants-Basel | 影响因子: | 4.100 |
| 时间: | 2021 | 起止号: | 2021 Apr 1; 10(4):683 |
| doi: | 10.3390/plants10040683 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
