Trapping the Pasture Odorscape Using Open-Air Solid-Phase Micro Extraction, a Tool to Assess Grassland Value.

阅读:3
作者:Cornu Agnès, Farruggia Anne, Leppik Ene, Pinier Centina, Fournier Florence, Genoud David, Frérot Brigitte
Besides supporting cattle feeding, grasslands are home to a diversity of plants and insects that interact with each other by emitting volatile compounds. The aim of this work was to develop a method to determine permanent grassland odorscape and relate it to flower-visiting insects. Two grasslands were chosen for their contrasting levels of botanical diversity, resulting from differing grazing managements. Measurements were made over two periods of three consecutive days at the beginning of grazing, and just after the cows had left the plots. Volatile compounds were trapped using solid-phase microextraction (SPME) fibers exposed eight hours a day in three exclosures per plot, and then analyzed by gas-chromatography-mass spectrometry (GC-MS). Insects were trapped using pan traps and a net, sorted and counted. The open air SPME method yielded volatile compound profiles that were richer than maize field profiles, comprising the common green leaf volatiles (GLV) and more specific ones. Differences between the odorscapes of the two grasslands were found, but they were not as marked as expected from their botanical composition. By contrast, there were sharp differences between the two periods, resulting from the combined effects of changes in weather conditions, plant phenological stage and grazing progress. Several correlations between insect counts and volatile compounds were found. Although their correlation coefficients were low, some of them were confirmed when tested by Spearman rank correlation, and could be logically explained. This method of grassland odorscape deserves to be developed because it can provide information on many aspects of grassland function and on the stresses that grassland plants undergo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。