Flexible surface-enhanced Raman scattering (SERS) has received attention as a means to move SERS-based broadband biosensing from bench to bedside. However, traditional flexible periodic nano-arrangements with sharp plasmonic resonances or their random counterparts with spatially varying uncontrollable enhancements are not reliable for practical broadband biosensing. Here, we report bioinspired quasi-(dis)ordered nanostructures presenting a broadband yet tunable application-specific SERS enhancement profile. Using simple, scalable biomimetic fabrication, we create a flexible metasurface (flex-MS) of quasi-(dis)ordered metal-insulator-metal (MIM) nanostructures with spectrally variable, yet spatially controlled electromagnetic hotspots. The MIM is designed to simultaneously localize the electromagnetic signal and block background Raman signals from the underlying polymeric substrate-an inherent problem of flexible SERS. We elucidate the effect of quasi-(dis)ordering on broadband tunable SERS enhancement and employ the flex-MS in a practical broadband SERS demonstration to detect human tear uric acid within its physiological concentration range (25-150 μM). The performance of the flex-MS toward noninvasively detecting whole human tear uric acid levels ex vivo is in good agreement with a commercial enzyme-based assay.
Bioinspired Disordered Flexible Metasurfaces for Human Tear Analysis Using Broadband Surface-Enhanced Raman Scattering.
阅读:3
作者:Narasimhan Vinayak, Siddique Radwanul Hasan, Park Haeri, Choo Hyuck
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2020 | 起止号: | 2020 May 18; 5(22):12915-12922 |
| doi: | 10.1021/acsomega.0c00677 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
