Early detection of tumor cell death in glioblastoma following treatment with chemoradiation has the potential to distinguish between true disease progression and pseudoprogression. Tumor cell death can be detected noninvasively in vivo by imaging the production of [2,3-2H2]malate from [2,3-2H2]fumarate using 2H magnetic resonance (MR) spectroscopic imaging. We show here that 2H MR spectroscopy and spectroscopic imaging measurements of [2,3-2H2]fumarate metabolism can detect tumor cell death in orthotopically implanted glioblastoma models within 48 hours following the completion of chemoradiation. Following the injection of [2,3-2H2]fumarate into tumor-bearing mice, production of [2,3-2H2]malate was measured in a human cell line-derived model and in radiosensitive and radioresistant patient-derived models of glioblastoma that were treated with temozolomide followed by targeted fractionated irradiation. The increase in the [2,3-2H2]malate/[2,3-2H2]fumarate signal ratio posttreatment, which correlated with histologic assessment of cell death, was a more sensitive indicator of treatment response than diffusion-weighted and contrast agent-enhanced 1H MRI measurements, which have been used clinically to detect responses of glioblastoma to chemoradiation. Overall, early detection of glioblastoma cell death using 2H MRI of malate production from fumarate could help improve the clinical evaluation of response to chemoradiation. SIGNIFICANCE: 2H magnetic resonance imaging of labeled fumarate metabolism can detect early evidence of tumor cell death following chemoradiation, meeting a clinical need to reliably detect treatment response in glioblastoma.
Imaging Glioblastoma Response to Radiotherapy Using 2H Magnetic Resonance Spectroscopy Measurements of Fumarate Metabolism.
阅读:4
作者:Hesse Friederike, Wright Alan J, Somai Vencel, Bulat Flaviu, Kreis Felix, Brindle Kevin M
| 期刊: | Cancer Research | 影响因子: | 16.600 |
| 时间: | 2022 | 起止号: | 2022 Oct 4; 82(19):3622-3633 |
| doi: | 10.1158/0008-5472.CAN-22-0101 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
