Objective.This study aims to develop a digital twin (DT) framework to achieve adaptive proton prostate stereotactic body radiation therapy (SBRT) with fast treatment plan selection and patient-specific clinical target volume (CTV) setup uncertainty. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes. This study seeks to address these uncertainties using DT concept to improve treatment quality.Approach. A retrospective study on two-fraction prostate proton SBRT was conducted, involving a cohort of 10 randomly selected patient cases from an institutional database (n= 43). DT-based treatment plans were developed using patient-specific CTV setup uncertainty, determined through machine learning predictions. Plans were optimized using pre-treatment CT and corrected cone-beam CT (cCBCT). The cCBCT was corrected for CT numbers and artifacts, and plan evaluation was performed using cCBCT to account for actual patient anatomy. The ProKnow scoring system was adapted to determine the optimal treatment plans.Main Results.Average CTV D98 values for original clinical and DT-based plans across 10 patients were 99.0% and 98.8%, with hot spots measuring 106.0% and 105.1%. Regarding bladder, clinical plans yielded average bladder neck V100 values of 29.6% and bladder V20.8 Gy values of 12.0cc, whereas DT-based plans showed better sparing of bladder neck with values of 14.0% and 9.5cc. Clinical and DT-based plans resulted in comparable rectum dose statistics due to SpaceOAR. Compared to clinical plans, the proposed DT-based plans improved dosimetry quality, improving plan scores ranging from 2.0 to 15.5.Significance.Our study presented a pioneering approach that leverages DT technology to enhance adaptive proton SBRT, potentially revolutionizing prostate radiotherapy to offer personalized treatment solutions using fast adaptive treatment plan selections and patient-specific setup uncertainty. This research contributes to the ongoing efforts to achieve personalized prostate radiotherapy.
Exploration of an adaptive proton therapy strategy using CBCT with the concept of digital twins.
阅读:5
作者:Chang Chih-Wei, Tian Zhen, Qiu Richard L J, Scott Mcginnis H, Bohannon Duncan, Patel Pretesh, Wang Yinan, Yu David S, Patel Sagar A, Zhou Jun, Yang Xiaofeng
| 期刊: | Physics in Medicine and Biology | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Jan 17; 70(2):025010 |
| doi: | 10.1088/1361-6560/ada684 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
