Purpose: The reconstruction of positron emission tomography images is a computationally intensive task which benefits from the use of increasingly complex physical models. Aiming to reduce the computational burden by means of a reduced system matrix, we present a list mode reconstruction approach based on maximum likelihood-expectation maximization and a sliced mesh support. Approach: The reconstruction strategy uses a fully 3D projection along series of 2D meshes arranged in the axial plane of the scanner. These series of meshes describe the continuous volumetric activity using a piece-wise linear function interpolated from the mesh elements. The mesh support is automatically adapted to the underlying structure of the activity by means of a remeshing process. This process finds a high-quality compact mesh representation constrained to a controlled interpolation error. Results: The method is tested using a Monte Carlo simulation of a Hoffman brain phantom and a National Electrical Manufacturers Association image quality phantom acquisition, using different sets of statistics. The reconstructions are compared against a voxelized reconstruction under different conditions, achieving similar or superior results. The number of parameters needed to reconstruct the image in voxel and mesh support is also compared, and the mesh reconstruction permits to reduce the number of nodes used to represent a complex image. Conclusions: The proposed reconstruction strategy reduces the number of parameters needed to describe the activity distribution by more than one order of magnitude for similar voxel size and with similar accuracy than state-of-the-art methods.
Reconstruction of positron emission tomography images using adaptive sliced remeshing strategy.
阅读:5
作者:Colmeiro Ramiro R, Verrastro Claudio, Minsky Daniel, Grosges Thomas
| 期刊: | Journal of Medical Imaging | 影响因子: | 1.700 |
| 时间: | 2021 | 起止号: | 2021 Mar;8(2):024001 |
| doi: | 10.1117/1.JMI.8.2.024001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
