A confined thermal expansion strategy to fabricate liquid metal (LM)-based monoliths with continuous LM network at ultra-low content. The results show a strong integration advantage of LM-based monoliths in density, mechanical strength, electromagnetic interference shielding effectiveness, and near field shielding effectiveness, as well as multi-functions such as magnetic actuation. ABSTRACT: Liquid metal (LM) has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity. However, the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge, due to high surface tension and pump-out issues of LM. Here, a novel confined thermal expansion strategy based on expandable microsphere (EM) is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network. The EM/LM monolith (EM/LMm) presents outstanding performance of lightweight like metallic aerogel (0.104 g cm(â1)), high strength (3.43 MPa), super elasticity (90% strain), as well as excellent tailor ability and recyclability, rely on its unique gas-filled closed-cellular structure and refined LM network. Moreover, the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness (98.7 dB) over a broad frequency range of 8.2â40 GHz among reported LM-based composites at an ultra-low content of LM, and demonstrates excellent electromagnetic sealing capacity in practical electronics. The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites, and applicable in magnetic responsive actuator. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-021-00766-5.
Tailorable, Lightweight and Superelastic Liquid Metal Monoliths for Multifunctional Electromagnetic Interference Shielding.
阅读:4
作者:Xu Yadong, Lin Zhiqiang, Rajavel Krishnamoorthy, Zhao Tao, Zhu Pengli, Hu Yougen, Sun Rong, Wong Ching-Ping
| 期刊: | Nano-Micro Letters | 影响因子: | 36.300 |
| 时间: | 2021 | 起止号: | 2021 Dec 13; 14(1):29 |
| doi: | 10.1007/s40820-021-00766-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
