Nitrogen fertilization nullifies host sanctions against non-fixing rhizobia and drives divestment from symbiosis in Lotus japonicus.

阅读:17
作者:Fronk David Charles, Ortiz-Barbosa Gabriel Santiago, Macedo Fatima, Lee Jason, Wun Kaylie, Sachs Joel L
Plants and animals house microbes that provide critical nutrients, but little is known about host control over microbial cooperation when resources are also accessed from the environment. Changes in nutrient access can challenge the host's ability to detect and selectively reward beneficial partners, destabilizing symbiosis. Legumes acquire nitrogen from soil and from symbiosis with rhizobia, but it is unclear if extrinsic sources of nitrogen interfere with host control systems. We inoculated the legume Lotus japonicus with rhizobia-bearing nitrogen fixation or nitrogen metabolism knockouts, and factorially varied molecular sources of nitrogen fertilizer. Lotus hosts selectively rewarded beneficial rhizobia and sanctioned non-fixing strains when extrinsic nitrogen was unavailable. Host benefits were undiminished when inoculated with rhizobia-bearing nitrogen metabolism knockouts, suggesting redundancies in nitrogen provisioning systems. However, under nitrogen fertilization, hosts did not discriminate between fixing and non-fixing rhizobia. Fertilized hosts formed miniaturized nodules housing limited rhizobia, divesting from symbiosis. Thus, sanctioning mechanisms rely on the detection of nitrogen fixation differences among rhizobia strains and can break down in nitrogen-rich environments. Nonetheless, divestment from symbiosis offers legumes robust host control, minimizing investment into rhizobia strains, irrespective of their capacity to provide benefit, when symbiosis services are not needed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。