Biological and Physicochemical Characterization of Self-Adhesive Protective Coating Dental Restorative Material after Incorporation of Antibacterial Nanoparticles.

阅读:5
作者:Gul Nazish, Idrees Qura Tul Ain, Fareed Muhammad Amber, Mian Salman Aziz, Nasim Hafiz Muhammad Owais, Naz Fariha, Aldahlan Bashayer, Khan Abdul Samad
This study evaluated the physicochemical and antibacterial properties of EQUIATM coat liquid (E) after incorporation of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles. ZnO and TiO2 (1 wt.% and 2 wt.%) were dispersed in EQUIA coat. Principal component analysis (PCA) and cluster analysis were performed to visualize systemic variation. Antibacterial activity was evaluated by colony-forming units and crystal violet staining using Streptococcusmutans and Lactobacillusacidophilus after 24 h, 48 h, and 72 h, and the microstructure was studied by scanning electron microscopy. The weight change was analyzed at 1 and 21 days. The PCA for TiO2- and ZnO-based groups showed 100% variance at all spectral ranges at 600−800/cm and 800−1200/cm, whereas 1200−1800/cm and 2700−3800/cm spectral regions demonstrated 99% variance. The absorbance values were significant (p < 0.05) for both nanoparticles-based adhesives, and the specimens with 2 wt.% ZnO showed the maximum response by minimum bacterial attachment, and the control group showed the least response by maximum attachment. The weight change percentage was reduced after the incorporation of antibacterial nanoparticles. It is suggested that EQUIATM coat containing nanoparticles exhibits promising results, and it may be recommended to clinically use as an improved coating material.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。