One-dimensional (1-D) ultrathin (15 nm) and thin (100 nm) aligned 1-D (0001) and (0001¯) oriented zinc oxide (ZnO) nanowire (NW) arrays were fabricated on copper substrates by one-step electrochemical deposition inside the pores of polycarbonate membranes. The aspect ratio dependence of the compressive stress because of the lattice mismatch between NW array/substrate interface and crystallite size variations is investigated. X-ray diffraction results show that the polycrystalline ZnO NWs have a wurtzite structure with aâ=â3.24 à , câ=â5.20 à , and [002] elongation. HRTEM and SAED pattern confirmed the polycrystalline nature of ultrathin ZnO NWs and lattice spacing of 0.58 nm. The crystallite size and compressive stress in as-grown 15- and 100-nm wires are 12.8 nm and 0.2248 GPa and 22.8 nm and 0.1359 GPa, which changed to 16.1 nm and 1.0307 GPa and 47.5 nm and 1.1677 GPa after annealing at 873 K in ultrahigh vacuum (UHV), respectively. Micro-Raman spectroscopy showed that the increase in E2 (high) phonon frequency corresponds to much higher compressive stresses in ultrathin NW arrays. The minimum-maximum magnetization magnitude for the as-grown ultrathin and thin NW arrays are approximately 8.45âÃâ10-3 to 8.10âÃâ10-3 emu/g and approximately 2.22âÃâ10-7 to 2.190âÃâ10-7 emu/g, respectively. The magnetization in 15-nm NW arrays is about 4 orders of magnitude higher than that in the 100 nm arrays but can be reduced greatly by the UHV annealing. The origin of ultrathin and thin NW array ferromagnetism may be the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of ZnO NWs. The n-type conductivity of 15-nm NW array is higher by about a factor of 2 compared to that of the 100-nm ZnO NWs, and both can be greatly enhanced by UHV annealing. The ability to tune the stresses and the structural and relative occupancies of ZnO NWs in a wide range by annealing has important implications for the design of advanced photonic, electronic, and magneto-optic nano devices.
Tuning of structural, optical, and magnetic properties of ultrathin and thin ZnO nanowire arrays for nano device applications.
阅读:6
作者:Shrama Satinder K, Saurakhiya Neelam, Barthwal Sumit, Kumar Rudra, Sharma Ashutosh
| 期刊: | Nanoscale Research Letters | 影响因子: | 0.000 |
| 时间: | 2014 | 起止号: | 2014 Mar 17; 9(1):122 |
| doi: | 10.1186/1556-276X-9-122 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
