One-Week Maternal Separation Caused Sex-Specific Changes in Behavior and Hippocampal Metabolomics of Offspring Rats.

阅读:9
作者:Dong Meng-Chen, Chen Yu-Xin, Sun Xin-Ran, Jiang Ning, Chang Qi, Liu Xin-Min, Pan Rui-Le
To investigate the effects of one-week maternal separation (MS) on anxiety- and depression-like behaviors in adolescent and adulthood as well as adult hippocampal metabolomics simultaneously in offspring female and male rats. In the MS group, newborn SD rats were separated from their mothers for 3 h per day from postnatal days (PND) 2 to 8. The open field test (OFT), elevated plus mazes (EPM), novelty suppressed feeding test (NSFT), and forced swimming test (FST) were conducted during adolescence and adulthood. Serum corticosterone, mRNA expression of hippocampal inflammatory cytokines, and hippocampal untargeted metabolomics of offspring adult rats were examined using an assay kit, qRT-PCR, and UPLC-Q-TOF/MS. Both MS female and male rats showed similar behaviors in OFT, EPM, NSFT, and SPT, except for the latency to feeding during adolescence and the open arm entries during adulthood, showed statistical significance only in MS female rats. Serum corticosterone and hippocampal pro-inflammatory cytokines IFN-γ were significantly elevated in both female and male rats, and IL-1β and TNF-α were significantly increased only in female rats. In hippocampal metabolism, the identification of differential metabolites displayed 53 and 37 in female rats and male rats, respectively (with 35 common metabolites), which were involved in 33 and 30 metabolic pathways with 28 common pathways. One-week MS induced sex-specific anxiety- and depression-like behaviors in female and male offspring rats during adolescence and adulthood, as well as sex-differentiated characteristics in the hippocampus inflammatory cytokines and metabolomics of adult MS rats. From the experimental data, the effects of MS on the female offspring rats were more severe than those of the male offspring rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。