A cost-effective solution to the problems that the automotive industry is facing nowadays regarding regulations on emissions and fuel efficiency is to achieve weight reduction of automobile parts. Glass fiber-reinforced polymers are regularly used to manufacture various components, and some parts may also contain thermoplastic elastomers for toughness improvement. This work aimed to investigate the effect of styrene-(ethylene-co-butylene)-styrene triblock copolymer (E) and treated fly ash (C) on the morphological, thermal, and mechanical properties of long glass fiber (G)-reinforced polypropylene (PP). Results showed that the composites obtained through melt processing methods presented similar thermal stability and improved (nano)mechanical properties compared to 25-30 wt.% G-reinforced PP composites (PP-25G/PP-30G). Specifically, the impact strength and surface hardness were greatly improved. The addition of 20 wt.% E led to a 25-39% increase in impact strength and surface elasticity, while the addition of 6.5 wt.% C led to a 16% increase in surface hardness. The composite based on 25 wt.% G, 6.5 wt.% C, and 20 wt.% E presented the best-balanced properties (8-17% increase in impact strength, 38-41% increase in axial strain, and 35% increase in surface hardness) compared with PP-30G/PP-25G. Structural and morphological analysis confirmed the presence of a strong interaction between the components that make the composites. Based on these results, the PP-G-E-C composites could be presented as a viable material for automotive applications.
The Effect of Thermoplastic Elastomer and Fly Ash on the Properties of Polypropylene Composites with Long Glass Fibers.
阅读:3
作者:Teodorescu George Mihail, Vuluga Zina, Ion Rodica Mariana, FistoÈ Toma, IoniÈÄ Andreea, SlÄmnoiu-Teodorescu Sofia, Paceagiu Jenica, Nicolae Cristian Andi, Gabor Augusta Raluca, Ghiurea Marius
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Apr 29; 16(9):1238 |
| doi: | 10.3390/polym16091238 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
