BACKGROUND & AIMS: Liver regeneration is essential for recovery following injury, but this process can be impaired by factors such as sex, age, metabolic disorders, fibrosis, and immunosuppressive therapies. We aimed to identify key transcriptomic, proteomic, and serum biomarkers of regeneration in mouse models under these diverse conditions using systems biology and machine learning approaches. METHODS: Six mouse models, each undergoing 75% hepatectomy, were used to study regeneration across distinct clinical contexts: young males and females, aged mice, stage 2 fibrosis, steatosis, and tacrolimus exposure. A novel contrastive deep learning framework with triplet loss was developed to map regenerative trajectories and identify genes associated with regenerative efficiency. RESULTS: Despite achieving â¥75% liver mass restoration by day 7, regeneration was significantly delayed in aged, steatotic, and fibrotic models, as indicated by reduced Ki-67 staining on day 2 (p <0.0001 for all). Interestingly, fibrotic livers exhibited reduced collagen deposition and partial regression to stage 1 fibrosis post-hepatectomy. Transcriptomic and proteomic analyses revealed consistent downregulation of cell cycle genes in impaired regeneration. The deep learning model integrating clinical and transcriptomic data predicted regenerative outcomes with 87.9% accuracy. SHAP (SHapley Additive exPlanations) highlighted six key predictive genes: Wee1, Rbl1, Gnl3, Mdm2, Cdk2, and Ccne2. Proteomic validation and human SPLiT-seq (split-pool ligation-based transcriptome sequencing) data further supported their relevance across species. CONCLUSIONS: This study identifies conserved cell cycle regulators underlying efficient liver regeneration and provides a predictive framework for evaluating regenerative capacity. The integration of deep learning and multi-omics profiling provides a promising approach to better understand liver regeneration and may help guide therapeutic strategies, especially in complex clinical settings. IMPACT AND IMPLICATIONS: The aim of this study was to identify key transcriptomic, proteomic, and serum biomarkers of regeneration in mouse models under diverse conditions, using systems biology and machine learning approaches. Key molecular drivers of liver regeneration across diverse clinical conditions were identified using innovative deep learning and multi-omics approaches. By identifying conserved cell cycle genes predictive of regenerative outcomes, this study offers a powerful framework to assess and potentially enhance liver recovery in older patients, those with fibrosis or steatosis, and/or those under immunosuppression.
Modelling the liver's regenerative capacity across different clinical conditions.
阅读:5
作者:Nguyen-Lefebvre Anh Thu, Ghosh Soumita, Baciu Cristina, Hasjim Bima J, Naimimohasses Sara, Oldani Graziano, Pasini Elisa, Brudno Michael, Selzner Nazia, Wrana Jeffrey, Bhat Mamatha
| 期刊: | Jhep Reports | 影响因子: | 7.500 |
| 时间: | 2025 | 起止号: | 2025 May 30; 7(8):101465 |
| doi: | 10.1016/j.jhepr.2025.101465 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
