The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)-Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations-XY (Horizontal, H) and YZ (Vertical, V)-were considered according to the general principles for part positioning, coordinates, and orientation typically used in additive manufacturing (AM). In addition, six specimens were tested for each printing orientation and material, providing insights into mechanical properties such as Tensile Strength, Young's Modulus, and Ultimate Strain, suggesting the materials' potential for biomedical applications. The experimental results were then compared with correspondent mechanical properties obtained from the literature for other polymers like ASA, PC, PP, ULTEM 9085, Copolyester, and Nylon. Thereafter, fatigue resistance curves (S-N curves) for PLA and PETG, printed along 45°, were determined at room temperature for a load ratio, R, of 0.2. Scanning electron microscope observations revealed fibre arrangements, compression/adhesion between layers, and fracture zones, shedding light on the failure mechanisms involved in the fatigue crack propagation of such materials and giving design reference values for future applications. In addition, fractographic analyses of the fatigue fracture surfaces were carried out, as well as X-ray Computed Tomography (XCT) and Thermogravimetric (TGA)/Differential Scanning Calorimetric (DSC) tests.
Mechanical Properties of Additively Manufactured Polymeric Materials-PLA and PETG-For Biomechanical Applications.
阅读:3
作者:Martins Rui F, Branco Ricardo, Martins Miguel, Macek Wojciech, Marciniak Zbigniew, Silva Rui, Trindade Daniela, Moura Carla, Franco Margarida, Malça Cândida
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Jun 29; 16(13):1868 |
| doi: | 10.3390/polym16131868 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
