Strain-specific differences in the development of bone loss and incidence of osteonecrosis following glucocorticoid treatment in two different mouse strains.

阅读:3
作者:Shidara Kie, Mohan Geetha, Evan Lay Yan-An, Jepsen Karl J, Yao Wei, Lane Nancy E
OBJECTIVE: Glucocorticoids (GCs) are commonly prescribed as treatment for chronic inflammatory diseases. Prolonged use of GCs is a common cause of atraumatic osteonecrosis (ON) and secondary osteoporosis. Currently, there is no effective treatment for this disease; therefore, a reliable animal model would be useful to study both the pathology and novel treatment strategies for patients with the disease. The aim of this study was to establish a validated, reproducible model of GC-induced ON and bone loss in two different mouse strains (BALB/c and C57BL/6). METHODS: Seven-week-old male BALB/c (n = 32) and male C57BL/6 mice (n = 32) were randomised into placebo or GC groups and treated with daily 4 mg/L oral dexamethasone in drinking water for 90 days. Study outcome measures included histologic assessment of ON of the distal femur, bone mass and mechanical strength of tibia and lumbar vertebral body, osteoclast number, biochemical measure of bone formation and bone marrow fat quantitation. RESULTS: GC-induced ON lesions were observed in the distal femur in 47% of the male BALB/c mice and 25% of the male C57BL/6 mice. GC treatment decreased the trabecular bone volume and serum pro-collagen type 1N-protease (P1NP) in BALB/c mice compared with the placebo (p < 0.05) and reduced tibial bone strength in both BALB/c and C57BL/6 mice. GC-treated BALB/c mice had significantly greater marrow fat levels compared to the placebo group. CONCLUSION: GC-induced ON was more prevalent in the male BALB/c mice compared to the male C57BL/6 mice. GC treatment significantly reduced bone mass, bone formation measured by P1NP, bone strength and increased marrow fat levels in male BALB/c mice. Therefore, the use of male BALB/c mice strain is recommended for both diagnostic and therapeutic studies for the prevention and treatment of ON and bone loss following prolonged treatment with GCs. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: GCs are commonly used to treat patients with various chronic inflammatory diseases, and this is associated with both the development of ON and bone loss. Our study confirmed that the BALB/c mouse strain treated for 90 days with GC may be useful for developing novel treatments for ON.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。