Pretreatment with rosavin attenuates PM2.5-induced lung injury in rats through antiferroptosis via PI3K/Akt/Nrf2 signaling pathway

罗塞维预处理通过 PI3K/Akt/Nrf2 信号通路抗铁死亡减轻大鼠 PM2.5 诱导的肺损伤

阅读:7
作者:Yilan Wang, Sijing Zhao, Nan Jia, Zherui Shen, Demei Huang, Xiaomin Wang, Yongcan Wu, Caixia Pei, Shihua Shi, Yacong He, Zhenxing Wang

Abstract

Inflammation and oxidative stress caused by fine particulate matter (PM2.5) increase the incidence and mortality rates of respiratory disorders. Rosavin is the main chemical component of Rhodiola plants, which exerts anti-oxidative and antiinflammatory effects. In this research, the potential therapeutic effect of rosavin was investigated by the PM2.5-induced lung injury rat model. Rats were instilled with PM2.5 (7.5 mg/kg) suspension intratracheally, while rosavin (50 mg/kg, 100 mg/kg) was delivered by intraperitoneal injection before the PM2.5 injection. It was observed that rosavin could prevent lung injury caused by PM2.5. PM2.5 showed obvious ferroptosis-related ultrastructural alterations, which were significantly corrected by rosavin. The pretreatment with rosavin downregulated the levels of tissue iron, malondialdehyde, and 4-hydroxynonenal, and increased the levels of glutathione. The expression of nuclear factor E2-related factor 2 (Nrf2) was upregulated by rosavin, together with other ferroptosis-related proteins. RSL3, a specific ferroptosis agonist, reversed the beneficial impact of rosavin. The network pharmacology approach predicted the activation of rosavin on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. LY294002, a potent PI3K inhibitor, decreased the upregulation of Nrf2 induced by rosavin. In conclusion, rosavin prevented lung injury induced by PM2.5 stimulation and suppressed ferroptosis via upregulating PI3K/Akt/Nrf2 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。