Quantitative proteomics profiling reveals activation of mTOR pathway in trastuzumab resistance

定量蛋白质组学分析揭示曲妥珠单抗耐药中 mTOR 通路的激活

阅读:6
作者:Wenhu Liu, Jinxia Chang, Mingwei Liu, Jiangbei Yuan, Jinqiang Zhang, Jun Qin, Xuefeng Xia, Yi Wang

Abstract

Trastuzumab is an antibody-based therapy drug targeting HER2-overexpressing tumors. While it has been proven to be very successful initially, most patients eventually develop resistance to trastuzumab. The mechanism of drug resistance is not well understood. Identifying pathways that mediate trastuzumab resistance will improve our understanding of the underlying mechanism and is crucial for the development of therapeutic strategies to overcome resistance.Here we report a quantitative proteomics profiling of a trastuzumab-sensitive (T-S) gastric cancer cell line NCI N87 and a trastuzumab-resistant NCI N87 (T-R) subline generated by low-dose, continuous trastuzumab treatment. By identifying proteins differentially expressed in these two cell lines, we show that multiple pathways including mTOR, Wnt, DNA damage response and metabolic pathways are significantly altered. We further confirm by western blotting that protein levels of multiple components of the mTOR pathway, including mTOR, AKT and RPS6KB1, are increased, whereas AKT1S1 is decreased, suggesting the activation of mTOR pathway. Importantly, treatment of AZD8055, an mTOR inhibitor, leads to the decreased phosphorylation levels of mTOR downstream molecules RPS6KB1 at Thr421/Ser424 and AKT at Ser473. Furthermore, AZD8055 also preferentially reduces viability, and inhibits migration and invasion abilities of the T-R cells. Together, our findings indicate that mTOR pathway is among multiple signaling pathways that mediate trastuzumab resistance in NCI N87 T-R cells, and that mTOR inhibitors may be used to treat trastuzumab resistant, HER2-positive gastric cancer tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。