BACKGROUND: This paper considers automatic segmentation of the left cardiac ventricle in short axis magnetic resonance images. Various aspects, such as the presence of papillary muscles near the endocardium border, makes simple threshold based segmentation difficult. METHODS: The endo- and epicardium are modelled as two series of radii which are inter-related using features describing shape and motion. Image features are derived from edge information from human annotated images. The features are combined within a discriminatively trained Conditional Random Field (CRF). Loopy belief propagation is used to infer segmentations when an unsegmented video sequence is given. Powell's method is applied to find CRF parameters by minimizing the difference between ground truth annotations and the inferred contours. We also describe how the endocardium centre points are calculated from a single human-provided centre point in the first frame, through minimization of frame alignment error. RESULTS: We present and analyse the results of segmentation. The algorithm exhibits robustness against inclusion of the papillary muscles by integrating shape and motion information. Possible future improvements are identified. CONCLUSIONS: The presented model integrates shape and motion information to segment the inner and outer contours in the presence of papillary muscles. On the Sunnybrook dataset we find an average Dice metric of 0.91 ± 0.02 and 0.93 ± 0.02 for the inner and outer segmentations, respectively. Particularly problematic are patients with hypertrophy where the blood pool disappears from view at end-systole.
Left ventricular segmentation from MRI datasets with edge modelling conditional random fields.
阅读:4
作者:Dreijer Janto F, Herbst Ben M, du Preez Johan A
| 期刊: | BMC Medical Imaging | 影响因子: | 3.200 |
| 时间: | 2013 | 起止号: | 2013 Jul 31; 13:24 |
| doi: | 10.1186/1471-2342-13-24 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
