The classification of land cover objects in hyperspectral imagery (HSI) has significantly advanced due to the development of convolutional neural networks (CNNs). However, challenges such as limited training data and high dimensionality negatively impact classification performance. Traditional CNN-based methods predominantly utilize 2D CNNs for feature extraction, which inadequately exploit the inter-band correlations in HSIs. While 3D CNNs can capture joint spectral-spatial information, they often encounter issues related to network depth and complexity. To address these issues, we propose an innovative land cover object classification approach in HSIs that integrates segmented principal component analysis (Seg-PCA) with hybrid 3D-2D CNNs. Our approach leverages Seg-PCA for effective feature extraction and employs the minimum-redundancy maximum relevance (mRMR) criterion for feature selection. By combining the strengths of both 3D and 2D CNNs, our method efficiently extracts spectral-spatial features. These features are then processed through fully connected dense layers and a softmax layer for classification. Extensive experiments on three widely used HSI datasets demonstrate that our method consistently outperforms existing state-of-the-art techniques in classification performance. These results highlight the efficacy of our approach and its potential to significantly enhance the classification of land cover objects in hyperspectral imagery.
Enhancing land cover object classification in hyperspectral imagery through an efficient spectral-spatial feature learning approach.
阅读:7
作者:Afjal Masud Ibn, Mondal Md Nazrul Islam, Mamun Md Al
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2024 | 起止号: | 2024 Dec 5; 19(12):e0313473 |
| doi: | 10.1371/journal.pone.0313473 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
