The synthesis process of AgNPs has been attracting a lot of attention in the fields of biosensors/sensors, diagnostics, and therapeutic applications. An attempt to understand the effect of different concentrations of reducing agents on the synthetic design process has been made. In this paper, we gather information on voltammetry studies and relate it with UV-vis and scanning electron microscopy (SEM) analyses. Given the kinetics, localized surface plasmon absorption (LSPR) band, and narrow size distribution of these methods, it was possible to compare the obtained measurements and clearly distinguish sizes and aggregation. AgNPs measured by SEM showed a statistically significant reduction of the nanoparticle sizes from 65 to 37.5 nm as the reducing agent increased. Well-matched d-spacing data calculated from selected area electron diffraction (SAED) patterns and X-ray diffraction (XRD) were obtained for all of the samples. The UV-vis studies showed that the SPR bands shift toward the blue region as the reducing agent concentration is increased, indicating a decrease in particle sizes. It is worth emphasizing that cyclic voltammetry (CV) and differential pulse voltammetry (DPV) coincide well with SEM on the aggregation of AgNPs at higher concentrations. A 10 mM reducing agent concentration resulted in uniform outcomes for producing AgNPs with the smallest size in terms of full width at half-maximum (FWHM) in all of the methods used in this study, while UV-vis band gaps increase with increasing reducing agent concentration. In agreement with all of the methods investigated, the results suggested that the best concentration of the reducing agents is 10 mM for a target application. These findings suggest the usefulness of voltammetry as a complementary method that can be used as a qualitative guide to identify the size and aggregation of NPs.
Electrochemistry as a Complementary Technique for Revealing the Influence of Reducing Agent Concentration on AgNPs.
阅读:3
作者:Timakwe Sapokazi, Silwana Bongiwe, Matoetoe Mangaka C
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2022 | 起止号: | 2022 Feb 4; 7(6):4921-4931 |
| doi: | 10.1021/acsomega.1c05374 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
