Transferability of features for neural networks links to adversarial attacks and defences.

阅读:8
作者:Kotyan Shashank, Matsuki Moe, Vargas Danilo Vasconcellos
The reason for the existence of adversarial samples is still barely understood. Here, we explore the transferability of learned features to Out-of-Distribution (OoD) classes. We do this by assessing neural networks' capability to encode the existing features, revealing an intriguing connection with adversarial attacks and defences. The principal idea is that, "if an algorithm learns rich features, such features should represent Out-of-Distribution classes as a combination of previously learned In-Distribution (ID) classes". This is because OoD classes usually share several regular features with ID classes, given that the features learned are general enough. We further introduce two metrics to assess the transferred features representing OoD classes. One is based on inter-cluster validation techniques, while the other captures the influence of a class over learned features. Experiments suggest that several adversarial defences decrease the attack accuracy of some attacks and improve the transferability-of-features as measured by our metrics. Experiments also reveal a relationship between the proposed metrics and adversarial attacks (a high Pearson correlation coefficient and low p-value). Further, statistical tests suggest that several adversarial defences, in general, significantly improve transferability. Our tests suggests that models having a higher transferability-of-features have generally higher robustness against adversarial attacks. Thus, the experiments suggest that the objectives of adversarial machine learning might be much closer to domain transfer learning, as previously thought.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。