It's increasingly important but difficult to determine potential biomarkers of schizophrenia (SCZ) disease, owing to the complex pathophysiology of this disease. In this study, a network-fusion based framework was proposed to identify genetic biomarkers of the SCZ disease. A three-step feature selection was applied to single nucleotide polymorphisms (SNPs), DNA methylation, and functional magnetic resonance imaging (fMRI) data to select important features, which were then used to construct two gene networks in different states for the SNPs and DNA methylation data, respectively. Two health networks (one is for SNP data and the other is for DNA methylation data) were combined into one health network from which health minimum spanning trees (MSTs) were extracted. Two disease networks also followed the same procedures. Those genes with significant changes were determined as SCZ biomarkers by comparing MSTs in two different states and they were finally validated from five aspects. The effectiveness of the proposed discovery framework was also demonstrated by comparing with other network-based discovery methods. In summary, our approach provides a general framework for discovering gene biomarkers of the complex diseases by integrating imaging genomic data, which can be applied to the diagnosis of the complex diseases in the future.
Integrating Imaging Genomic Data in the Quest for Biomarkers of Schizophrenia Disease.
阅读:4
作者:Su-Ping Deng, Wenxing Hu, Calhoun Vince D, Yu-Ping Wang
| 期刊: | Ieee-Acm Transactions on Computational Biology and Bioinformatics | 影响因子: | 3.400 |
| 时间: | 2018 | 起止号: | 2018 Sep-Oct;15(5):1480-1491 |
| doi: | 10.1109/TCBB.2017.2748944 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
