It's increasingly important but difficult to determine potential biomarkers of schizophrenia (SCZ) disease, owing to the complex pathophysiology of this disease. In this study, a network-fusion based framework was proposed to identify genetic biomarkers of the SCZ disease. A three-step feature selection was applied to single nucleotide polymorphisms (SNPs), DNA methylation, and functional magnetic resonance imaging (fMRI) data to select important features, which were then used to construct two gene networks in different states for the SNPs and DNA methylation data, respectively. Two health networks (one is for SNP data and the other is for DNA methylation data) were combined into one health network from which health minimum spanning trees (MSTs) were extracted. Two disease networks also followed the same procedures. Those genes with significant changes were determined as SCZ biomarkers by comparing MSTs in two different states and they were finally validated from five aspects. The effectiveness of the proposed discovery framework was also demonstrated by comparing with other network-based discovery methods. In summary, our approach provides a general framework for discovering gene biomarkers of the complex diseases by integrating imaging genomic data, which can be applied to the diagnosis of the complex diseases in the future.
Integrating Imaging Genomic Data in the Quest for Biomarkers of Schizophrenia Disease.
阅读:8
作者:Su-Ping Deng, Wenxing Hu, Calhoun Vince D, Yu-Ping Wang
| 期刊: | Ieee-Acm Transactions on Computational Biology and Bioinformatics | 影响因子: | 3.400 |
| 时间: | 2018 | 起止号: | 2018 Sep-Oct;15(5):1480-1491 |
| doi: | 10.1109/TCBB.2017.2748944 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
