An Improved Distributed Sampling PPO Algorithm Based on Beta Policy for Continuous Global Path Planning Scheme.

阅读:5
作者:Xiao Qianhao, Jiang Li, Wang Manman, Zhang Xin
Traditional path planning is mainly utilized for path planning in discrete action space, which results in incomplete ship navigation power propulsion strategies during the path search process. Moreover, reinforcement learning experiences low success rates due to its unbalanced sample collection and unreasonable design of reward function. In this paper, an environment framework is designed, which is constructed using the Box2D physics engine and employs a reward function, with the distance between the agent and arrival point as the main, and the potential field superimposed by boundary control, obstacles, and arrival point as the supplement. We also employ the state-of-the-art PPO (Proximal Policy Optimization) algorithm as a baseline for global path planning to address the issue of incomplete ship navigation power propulsion strategy. Additionally, a Beta policy-based distributed sample collection PPO algorithm is proposed to overcome the problem of unbalanced sample collection in path planning by dividing sub-regions to achieve distributed sample collection. The experimental results show the following: (1) The distributed sample collection training policy exhibits stronger robustness in the PPO algorithm; (2) The introduced Beta policy for action sampling results in a higher path planning success rate and reward accumulation than the Gaussian policy at the same training time; (3) When planning a path of the same length, the proposed Beta policy-based distributed sample collection PPO algorithm generates a smoother path than traditional path planning algorithms, such as A*, IDA*, and Dijkstra.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。