Gallium phosphide (GaP) has been increasingly prioritized, fueled by the enormous demands in visible light applications such as biomedical and quantum technologies. GaP has garnered tremendous attention in nanophotonics thanks to its high refractive index, indirect bandgap width of 2.26â¯eV, lattice perfectly matched with silicon, and omnipotent and competitive nonlinear optical properties. Herein, we review the progress and application of GaP in nanoscale devices over the past two decades. The material properties of bulk GaP are first listed, followed by a summary of the methodologies for fabricating nanoscale devices and related integration techniques. Then, we digest the operational mechanisms across different GaP-based devices on their optical linear responses. Following this, we categorize the GaP nonlinear optical effects into multiple aspects including second-harmonic generation, four-wave mixing, Kerr optical frequency combs, etc. Ultimately, we present a perspective on GaP nanophotonics in the context of coexisting and competing modes of various nonlinear effects. We believe that a comprehensive overview of unique GaP will propel these nanophotonic devices toward a mature state, underpinning foundational understanding and leveraging practical innovations.
A review of gallium phosphide nanophotonics towards omnipotent nonlinear devices.
阅读:15
作者:Wang Yifan, Pan Ziyu, Yan Yongxian, Yang Yatao, Zhao Wenhua, Ding Ning, Tang Xingyu, Wu Pengzhuo, Zhao Qiancheng, Li Yi
| 期刊: | Nanophotonics | 影响因子: | 6.600 |
| 时间: | 2024 | 起止号: | 2024 Jul 12; 13(18):3207-3252 |
| doi: | 10.1515/nanoph-2024-0172 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
