Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Red-Emitting Chlorins.

阅读:5
作者:Liu Mengran, Chen Chih-Yuan, Mandal Amit Kumar, Chandrashaker Vanampally, Evans-Storms Rosemary B, Pitner J Bruce, Bocian David F, Holten Dewey, Lindsey Jonathan S
Chromophores that absorb and emit in the red spectral region (600-700 nm), are water soluble, and bear a bioconjugatable tether are relatively rare yet would fulfill many applications in photochemistry and photomedicine. Here, three molecular designs have been developed wherein stable synthetic chlorins - analogues of chlorophylls - have been tailored with PEG groups for use in aqueous solution. The designs differ with regard to order of the installation (pre/post-formation of the chlorin macrocycle) and position of the PEG groups. Six PEGylated synthetic chlorins (three free bases, three zinc chelates) have been prepared, of which four are equipped with a bioconjugatable (carboxylic acid) tether. The most effective design for aqueous solubilization entails facial encumbrance where PEG groups project above and below the plane of the hydrophobic disk-like chlorin macrocycle. The chlorins possess strong absorption at ~400 nm (B band) and in the red region (Q(y) band); regardless of wavelength of excitation, emission occurs in the red region. Excitation in the ~400 nm region thus provides an effective Stokes shift of >200 nm. The four bioconjugatable water-soluble chlorins exhibit Q(y) absorption/emission in water at 613/614, 636/638, 698/700 and 706/710 nm. The spectral properties are essentially unchanged in DMF and water for the facially encumbered chlorins, which also exhibit narrow Q(y) absorption and emission bands (full-width-at-half maximum of each <25 nm). The water-solubility was assessed by absorption spectroscopy over the concentration range ~0.4 μM - 0.4 mM. One chlorin was conjugated to a mouse polyclonal IgG antibody for use in flow cytometry with compensation beads for proof-of-principle. The conjugate displayed a sharp signal when excited by a violet laser (405 nm) with emission in the 620-660 nm range. Taken together, the designs described herein augur well for development of a set of spectrally distinct chlorins with relatively sharp bands in the red region.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。