Novel C-2 Aromatic Heterocycle-Substituted Triterpenoids Inhibit Hedgehog Signaling in GLI1 Overexpression Cancer Cells.

阅读:4
作者:Frydrych Ivo, Choma Barbora, Slavíková Lucie, Pokorný Jan, Jakubcová Nikola, Ludha Sandra, Gurská Soňa, Řehulka Jiří, LiÅ¡ková Barbora, Džubák Petr, Hajdúch Marián, Urban Milan
The hedgehog signaling pathway plays an important role in vertebrate embryonic development, tissue homeostasis, and tumorigenesis. Constitutive activation of Hh signaling in various human tumors leads to GLI-mediated transcription and tumor progression. Based on the preliminary screening of a large library of known triterpenes that exhibited interesting Hh inhibitory activity, we designed and synthesized a new series of triterpenoid analogues containing aromatic heterocyclic substituents at position C-2 to enhance their interference with Hh signaling. In this study, we evaluated the effect of 15 synthesized triterpenoids on cell proliferation and Hh pathway activity in relevant cancer cell lines. Among these compounds, two derivatives, 11a and 11b, both featuring a furan ring at position C-2, demonstrated potent inhibitory effects on proliferation and induced cell death in nonsmall cell lung cancer (NSCLC) and prostate cancer cell lines exhibiting hyper-activated Hh signaling. Moreover, these compounds significantly reduced GLI-mediated transcription in cell-based reporter assays. Detailed immunoblot analyses revealed that compounds 11a and 11b decreased the expression of endogenous GLI1 protein and its target genes associated with tumor progression and proliferation, such as Cyclin D1, N-Myc, and Bcl-2, in A549 and DU-145 cancer cells. These findings suggest that the antiproliferative effects of 11a and 11b are mediated through inhibition of the Hh signaling pathway and are promising candidates for the development of new anticancer therapies targeting Hh-dependent tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。