The molecular regulatory mechanism underlying meat quality between different chicken genotypes remains elusive. This study aimed to identify the differences in metabolites and pathways in pectoralis major (breast muscle) between a commercial fast-growing chicken genotype (Cobb500) and a slow-growing Chinese native chicken genotype (Beijing-You chickens, BYC) at market ages respectively based on ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UHPLC-QTOF/MS). Eighteen metabolites were identified as potential biomarkers between BYC and Cobb500 at market ages. Among them, L-cysteine exhibited a higher relative intensity in BYC compared with Cobb500 and was enriched into 10 potential flavor-associated KEGG pathways. In addition, the glycerophospholipid metabolism pathway was found to be associated with chicken meat flavor and the accumulation of sn-glycerol 3-phosphate and acetylcholine was more predominant in BYC than that in Cobb500, which were catalyzed by glycerophosphocholine phosphodiesterase (GPCPD1, EC:3.1.4.2), choline O-acetyltransferase (CHAT, EC:2.3.1.6), and acetylcholinesterase (ACHE, EC:3.1.1.7). Overall, the present study provided some metabolites and pathways for further investigating the roles of the differences in meat flavor quality in breast muscle between Cobb500 and BYC at market ages.
UHPLC-QTOF/MS-based comparative metabolomics in pectoralis major of fast- and slow-growing chickens at market ages.
阅读:4
作者:Zhang Jian, Cao Jing, Geng Ailian, Wang Haihong, Chu Qin, Yan Zhixun, Zhang Xiaoyue, Zhang Yao, Liu Huagui
| 期刊: | Food Science & Nutrition | 影响因子: | 3.800 |
| 时间: | 2022 | 起止号: | 2021 Dec 2; 10(2):487-498 |
| doi: | 10.1002/fsn3.2673 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
