Analytical CT reconstruction is popular in practice because of its computational efficiency, but it suffers from low reconstruction quality when an insufficient number of projections are used. To address this issue, this paper presents a new analytical method of backprojection Wiener deconvolution (BPWD). BPWD executes backprojection first, and then applies a Wiener deconvolution to the whole backprojected image. The Wiener filter is derived from a ramp filter, enabling the proposed approach to perform reconstruction and denoising simultaneously. The use of a filter after backprojection does not differentiate between real sampled projections and interpolated ones, introducing reconstruction errors. Therefore a weighted ramp filter was applied to increase the contribution of real sampled projections in the reconstruction, thus improving reconstruction quality. Experiments on synthetic data and real phase-contrast x-ray images showed that the proposed approach yields better reconstruction quality compared to the classical filtered backprojection (FBP) method, with comparable reconstruction speed.
Backprojection Wiener deconvolution for computed tomographic reconstruction.
阅读:4
作者:Wang Zhenglin, Cai Jinhai, Guo William, Donnelley Martin, Parsons David, Lee Ivan
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2018 | 起止号: | 2018 Dec 18; 13(12):e0207907 |
| doi: | 10.1371/journal.pone.0207907 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
