Subunit composition of N-methyl-D-aspartate-type glutamate receptors (NMDARs) dictates their function, yet the ontogenic profiles of human NMDAR subunits from gestation to adulthood have not been determined. We examined NMDAR mRNA and protein development in human dorsolateral prefrontal cortex (DLPFC), an area in which NMDARs are critical for higher cognitive processing and NMDAR hypofunction is hypothesized in schizophrenia. Using quantitative reverse transcriptase-polymerase chain reaction and western blotting, we found NR1 expression begins low prenatally, peaks in adolescence, yet remains high throughout life, suggesting lifelong importance of NMDAR function. In contrast, NR3A levels are low during gestation, surge soon after birth, and decline progressively through adolescence and into adulthood. Because NR3A subunits uniquely attenuate NMDAR-mediated currents, limit calcium influx, and suppress dendritic spine formation, high levels during early childhood may be important for regulating neuroprotection and activity-dependent sculpting of synapses. We also examined whether subunit changes underlie reduced NMDAR activity in schizophrenia. Our results reveal normal NR1 and NR3A protein levels in DLPFC from schizophrenic patients, indicating that NMDAR hypofunction is unlikely to be maintained by gross changes in NR3A-containing NMDARs or overall NMDAR numbers. These data provide insights into NMDAR functions in the developing CNS and will contribute to designing pharmacotherapies for neurological disorders.
Developmental regulation of the NMDA receptor subunits, NR3A and NR1, in human prefrontal cortex.
阅读:5
作者:Henson Maile A, Roberts Adam C, Salimi Kayvon, Vadlamudi Swarooparani, Hamer Robert M, Gilmore John H, Jarskog L Fredrik, Philpot Benjamin D
| 期刊: | Cerebral Cortex | 影响因子: | 2.900 |
| 时间: | 2008 | 起止号: | 2008 Nov;18(11):2560-73 |
| doi: | 10.1093/cercor/bhn017 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
