A quantitative structure-activity relationship (QSAR) study is performed on 48 novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2 derivatives as anticancer agents capable of inhibiting c-Met receptor tyrosine kinase. The present study is conducted using multiple linear regression, multiple nonlinear regression and artificial neural networks. Three QSAR models are developed after partitioning the database into two sets (training and test) via the k-means method. The obtained values of the correlation coefficients by the three developed QSAR models are 0.90, 0.91 and 0.92, respectively. The resulting models are validated by using the external validation, leave-one-out cross-validation, Y-randomization test, and applicability domain methods. Moreover, we evaluated the drug-likeness properties of seven selected molecules based on their observed high activity to inhibit the c-Met receptor. The results of the evaluation showed that three of the seven compounds present drug-like characteristics. In order to identify the important active sites for the inhibition of the c-Met receptor responsible for the development of cancer cell lines, the crystallized form of the Crizotinib-c-Met complex (PDB code: 2WGJ) is used. These sites are used as references in the molecular docking test of the three selected molecules to identify the most suitable molecule for use as a new c-Met inhibitor. A comparative study is conducted based on the evaluation of the predicted properties of ADMET in silico between the candidate molecule and the Crizotinib inhibitor. The comparison results show that the selected molecule can be used as new anticancer drug candidates.
QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase.
阅读:6
作者:Daoui Ossama, Elkhattabi Souad, Chtita Samir, Elkhalabi Rachida, Zgou Hsaine, Benjelloun Adil Touimi
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2021 | 起止号: | 2021 Jul 3; 7(7):e07463 |
| doi: | 10.1016/j.heliyon.2021.e07463 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
